Leetcode:39,40,78,90,46,47,131

LeetCode 39. Combination Sum

回溯算法是通过一步一步(通常是用递归)构建可能”解”, 并且回溯不可能”解”来求所有或者部分解决方案的通用算法。 其中“回溯”的具体意思就是将不可能解或者部分解的候选尽早的舍弃掉, “解”需要满足一定的限制条件(constraint satisfaction)

回溯算法一般的通解:

ALGORITHM try(v1,...,vi)  // 这里的V1.....V2携带的参数说明 “可能解”  
   // 入口处验证是否是全局解,如果是,直接返回。 
   // 实际编程中也需要查看是否是无效解,如果是,也是直接返回
   IF (v1,...,vi) is a solution THEN RETURN (v1,...,vi)  
   FOR each v DO  // 对于每一个可能的解,进行查看
      // 下面的含义是形成一个可能解 进行递归
      IF (v1,...,vi,v) is acceptable vector  THEN 
        sol = try(v1,...,vi,v) 
        IF sol != () THEN RETURN sol 
        // 这个地方其实需要增加“回溯” 处理,实际编程中通常是函数参数的变化
      END 
   END 
   RETURN () 

题目1:78. Subsets

Given a set of distinct integers, nums, return all possible subsets (the power set).

Note: The solution set must not contain duplicate subsets.

Example:

Input: nums = [1,2,3]
Output:
[
  [3],
  [1],
  [2],
  [1,2,3],
  [1,3],
  [2,3],
  [1,2],
  []
]

代码:

public List<List<Integer>> subsets(int[] nums) {
    List<List<Integer>> list = new ArrayList<>();
    Arrays.sort(nums);
    backtrack(list, new ArrayList<>(), nums, 0);
    return list;
}

private void backtrack(List<List<Integer>> list , List<Integer> tempList, int [] nums, int start){
    list.add(new ArrayList<>(tempList));
    for(int i = start; i < nums.length; i++){
        tempList.add(nums[i]);
        backtrack(list, tempList, nums, i + 1);
        tempList.remove(tempList.size() - 1);
    }
}

结果值:

[[], [1], [1, 2], [1, 2, 3], [1, 3], [2], [2, 3], [3]]
  1. Subsets II

描述:

Given a collection of integers that might contain duplicates, nums, 
return all possible subsets (the power set).

Note: The solution set must not contain duplicate subsets.

Example:

Input: [1,2,2]
Output:
[
  [2],
  [1],
  [1,2,2],
  [2,2],
  [1,2],
  []
]

代码:

public List<List<Integer>> subsetsWithDup(int[] nums) {
    List<List<Integer>> list = new ArrayList<>();
    Arrays.sort(nums);
    backtrack(list, new ArrayList<>(), nums, 0);
    return list;
}

private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int start){
    list.add(new ArrayList<>(tempList));
    for(int i = start; i < nums.length; i++){
        if(i > start && nums[i] == nums[i-1]) continue; // skip duplicates
        tempList.add(nums[i]);
        backtrack(list, tempList, nums, i + 1);
        tempList.remove(tempList.size() - 1);
    }
} 
  1. Permutations 描述:
Given a collection of distinct integers, 
return all possible permutations.

Example:

Input: [1,2,3]
Output:
[
  [1,2,3],
  [1,3,2],
  [2,1,3],
  [2,3,1],
  [3,1,2],
  [3,2,1]
]

代码:

public List<List<Integer>> permute(int[] nums) {
   List<List<Integer>> list = new ArrayList<>();
   // Arrays.sort(nums); // not necessary
   backtrack(list, new ArrayList<>(), nums);
   return list;
}


private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums){
   if(tempList.size() == nums.length){
      list.add(new ArrayList<>(tempList));
   } else{
      for(int i = 0; i < nums.length; i++){ 
         if(tempList.contains(nums[i])) continue; // element already exists, skip
         tempList.add(nums[i]);
         backtrack(list, tempList, nums);
         tempList.remove(tempList.size() - 1);
      }
   }
} 
  1. Permutations II

描述:

Given a collection of numbers that might contain duplicates, 
return all possible unique permutations.

Example:

Input: [1,1,2]
Output:
[
  [1,1,2],
  [1,2,1],
  [2,1,1]
]

代码:

public List<List<Integer>> permuteUnique(int[] nums) {
    List<List<Integer>> list = new ArrayList<>();
    Arrays.sort(nums);
    backtrack(list, new ArrayList<>(), nums, new boolean[nums.length]);
    return list;
}

private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, boolean [] used){
    if(tempList.size() == nums.length){
        list.add(new ArrayList<>(tempList));
    } else{
        for(int i = 0; i < nums.length; i++){
            if(used[i] || i > 0 && nums[i] == nums[i-1] && !used[i - 1]) continue;
            used[i] = true; 
            tempList.add(nums[i]);
            backtrack(list, tempList, nums, used);
            used[i] = false; 
            tempList.remove(tempList.size() - 1);
        }
    }
}

39 Combination Sum

Given a set of candidate numbers (candidates) (without duplicates) and 
a target number (target), find all unique combinations in candidates where 
the candidate numbers sums to target.

The same repeated number may be chosen from candidates unlimited number of times.

Note:

All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
Example 1:

Input: candidates = [2,3,6,7], target = 7,
A solution set is:
[
  [7],
  [2,2,3]
]
Example 2:

Input: candidates = [2,3,5], target = 8,
A solution set is:
[
  [2,2,2,2],
  [2,3,3],
  [3,5]
]

代码 :

public List<List<Integer>> combinationSum(int[] nums, int target) {
    List<List<Integer>> list = new ArrayList<>();
    Arrays.sort(nums);
    backtrack(list, new ArrayList<>(), nums, target, 0);
    return list;
}

private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int remain, int start){
    if(remain < 0) return;
    else if(remain == 0) list.add(new ArrayList<>(tempList));
    else{ 
        for(int i = start; i < nums.length; i++){
            tempList.add(nums[i]);
            backtrack(list, tempList, nums, remain - nums[i], i); // not i + 1 because we can reuse same elements
            tempList.remove(tempList.size() - 1);
        }
    }
}
  1. Combination Sum II
Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.

Each number in candidates may only be used once in the combination.

Note:

All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
Example 1:

Input: candidates = [10,1,2,7,6,1,5], target = 8,
A solution set is:
[
  [1, 7],
  [1, 2, 5],
  [2, 6],
  [1, 1, 6]
]
Example 2:

Input: candidates = [2,5,2,1,2], target = 5,
A solution set is:
[
  [1,2,2],
  [5]
]

代码:

public List<List<Integer>> combinationSum2(int[] nums, int target) {
    List<List<Integer>> list = new ArrayList<>();
    Arrays.sort(nums);
    backtrack(list, new ArrayList<>(), nums, target, 0);
    return list;
    
}

private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int remain, int start){
    if(remain < 0) return;
    else if(remain == 0) list.add(new ArrayList<>(tempList));
    else{
        for(int i = start; i < nums.length; i++){
            if(i > start && nums[i] == nums[i-1]) continue; // skip duplicates
            tempList.add(nums[i]);
            backtrack(list, tempList, nums, remain - nums[i], i + 1);
            tempList.remove(tempList.size() - 1); 
        }
    }
} 
  1. Palindrome Partitioning
Given a string s, partition s such that every substring of the partition is a palindrome.

Return all possible palindrome partitioning of s.

Example:

Input: "aab"
Output:
[
  ["aa","b"],
  ["a","a","b"]
]

代码:

public List<List<String>> partition(String s) {
   List<List<String>> list = new ArrayList<>();
   backtrack(list, new ArrayList<>(), s, 0);
   return list;
}

public void backtrack(List<List<String>> list, List<String> tempList, String s, int start){
   if(start == s.length())
      list.add(new ArrayList<>(tempList));
   else{
      for(int i = start; i < s.length(); i++){
         if(isPalindrome(s, start, i)){
            tempList.add(s.substring(start, i + 1));
            backtrack(list, tempList, s, i + 1);
            tempList.remove(tempList.size() - 1);
         }
      }
   }
}

public boolean isPalindrome(String s, int low, int high){
   while(low < high)
      if(s.charAt(low++) != s.charAt(high--)) return false;
   return true;
} 

Powered by andiHappy and Theme by AndiHappy